
Linked List Implementation
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Linked List Implementation

There are 2 classes in linked list

implementation:

1. Class Node

2. Classes list.

Declaration of Node

Declare Node class for the nodes which contains

data and next, which is a pointer to the next

node in the list.

class Node {

public:

double data; // data

Node* next; // pointer to next node

};

data next

4.5

Declaring a node for class account

Create a node for class account using struct

struct nodeAccount {

char accountName[20];

char accountNo[15];

float balance;

nodeAccount *next;

};

Ahmad Ali 1234567 10,000.00

accountName accountNo balance next

Declaration of class List

Class List contains

• head: a pointer to the first
node in the list.

The list is initially empty, head
is set to NULL

• length : number of nodes in
the list

• Operations on List

List

head

length

IsEmpty()

InsertNode()

FindNode()

DeleteNode()

DisplayList()

Declaration of class List

class List {

public:

// constructor

List(void) { head = NULL; length = 0;}

// destructor

~List(void);

bool IsEmpty() { return head == NULL; }

void InsertNode(double x);

int FindNode(double x);

void DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

int length;

};

Insert a New Node to the List

Possible cases of InsertNode

1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

case 1

case 2

Insert a New Node to the List

void InsertNode(double x)

– This function inserts a node with data equal to x.

– After insertion, this function generates a sorted list in ascending
order.

Steps to insert a node in linked list

– Find the location of the value to be inserted so that the value
will be in the correct order in the list.

– Allocate memory for the new node

– Insert the new node to the list.

Insert a New Node to the List
void InsertNode(double x)

– Insert at front or empty list : point head to the new node

– Insert in the middle or back list : point the new node

predecessor to the new node

newNode

prevNode

newNode->next = prevNode->next;

prevNode->next = newNode;

newNode

head

newNode->next = head;

head = newNode;

Delete Node

void DeleteNode(double x)

– Delete a node with the value equal to x from the

list.

• Steps

– Find the node to be deleted .

– Release the memory occupied by the found node.

– Set the pointer of the predecessor of the found

node to the successor of the found node.

• Like InsertNode, there are two special cases

– Delete first node.

– Delete the node in middle or at the end of the list.

Delete Node

11

prevNode->next = currNode->next;

delete currNode;

currNode = NULL;

currNodeprevNode

Delete in the middle or at the back of the list

head = currNode->next;

delete currNode;

currNode = NULL;

currNodehead

Delete Node

Delete at the front of the list

Print All Elements in the List

void DisplayList()

– Print the data of all the elements and

– Print the number of the nodes in the list

void List::DisplayList()

{

int num = 0;

Node* currNode = head;

while (currNode != NULL){

cout << currNode->data << endl;

currNode = currNode->next

}

}

Summary

Implementation

• Linked lists implementation need 2 classes

to be declared, which are class node and

class list.

List Size

• No need to know in advanced how many

nodes will be in the list. Linked list can

easily grow and shrink in size dynamically.

• However, the size of a C++ array is fixed at

compilation time, therefore the number of

elements in the list are limited to the size.

Summary

Insertions and deletions

– To insert or delete an element in an array, need

to make room for new elements or close the gap

caused by deleted elements.

– With a linked list, no need to move other nodes.

Only need to reset some pointers. Linked list is

easier and faster to delete node in the list.

Accessing element

– In array, elements can be access at random,

while in linked list item can only be accessed

sequentially.

Thank
You

http://comp.utm.my/

