
Introduction to Abstract Data

Type & C++
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

In this lesson, students are expected to:

Understand Abstract Data Type
concept

Master C++ programming Class declaration

Creating constructor and destructor

Pass object as function parameter

Return object from a function.

Array of class

What is Abstraction?

Make calls and receive calls

Take photos

Send and receive messages

Access internet

Abstraction

4

Functional
abstraction

Data

Abstraction

• The purpose of a module is separated
from its implementation

• Separates the purpose of a module from
its implementation

• Focuses on the operations of data (what
you can do to a collection of data)

• And not on the implementation of the
operations (how you do it)

• Develop each data structure
independently from the rest of the
solution

Abstract Data Type

Abstract data type (ADT)

 A collection of data and a set of operations on

the data

 Given the operations’ specifications, the ADT’s

operations can be used without knowing their

implementations or how data is stored,

Abstract Data Type - Example

bookbook

book

title

year

author

publisher

price

getBookInfo()

checkAuthor()

checkPrice()

checkPublisher()

Abstracion of book Abstracion of book

abstract to attributes

behavior

Abstraction of a book

Encapsulation

 The process of combining data and

functions into a single unit called class.

 The programmer cannot directly access the

data. Data is only accessible through the

functions present inside the class.

 Data encapsulation is an important concept

of data hiding.

Abstraction Implementation in C++

 In C++, class defines a new data type

 In a class there are data members and methods,

which are called member functions.

 By default, all members in a class are private

• But it can also be specified as public

• An object of the datatype is an instance of a class.

How to define a Class in C++?
class clasName

{

public:

list of data member declaration;

list of function member declaration;

private:

list of data member declaration;

list of function member declaration;

}; // end class definition

public : members that are accessible by other modules
private : members that are hidden from other modules and
can only be accessed by function member of the same class.

class member
declarations:
data member
and
function
member

Class Definition for Book
class book

{ private:

// data member declaration as private

float price;

int year;

char author[20], title[25];

public:

book(); // Default constructor

// Constructor with parmeter

book(char *bkTitle,double bkPrice);

book(int = 2000);

// C++ function

void getData();

void print();

float checkPrice()const;

char * getAuthor();

~book() ; // destructor

}; // end book declaration

Attribute
declarations

Constructor

Function Member
Declaration

Destructor

Constructors
 Constructors

– Used to create and initialize new instances of a

class

– Is invoked when an instance of a class is declared

– Have the same name as the class

– Have no return type, not even void

 A class can have several constructors

– However, compiler will generate a default

constructor if no constructor is defined.

Destructor
 Destroys an instance of an object when the object’s

lifetime ends

 Each class has one destructor

– The compiler will generate a destructor if the

destructor is not defined

 Example: ~book();

book::~book()

{ cout << "\nDestroy the book with title "

<< title;

}

Function Member Implementation

How to call the member function?

• You can call the function from main() or non-

member function:

book myBook;

cout << myBook.getData() << endl;

const member function – cannot alter value

void book::getData()

{ cout << "\nEnter author's name : ";

cin >> author;

cout << "\nEnter book title : ";

cin >> title;

}

float book::checkPrice()const

{ return price; }

Classes as Function Parameters

• Class objects can be passed to another function as

parameters

• 3 methods of passing class as parameter to function

▫ Pass by value

▫ Pass by reference

▫ Pass by const reference

14

Passing a class object by Value

Any change that the function makes to the object is

not reflected in the corresponding actual argument in

the calling function.

Pass by value

16

class subject

{

private:

char subjectName[20];

char kod[8];

int credit;

public:

subject (char *,char *,int k=3);

void getDetail();

friend void changeSubject(subject);

};

subject:: subject (char *sub,char *kd,int kre)

{ strcpy(subjectName,sub);

strcpy(kod,kd);

credit = kre;

}

void subject:: getDetail()

{

cout << "\n\nSubject Name : " << subjectName;

cout << "\nSubject Code : " << kod;

cout << "\nCredit hours : " << credit;

}

friend function is
used to pass object as
parameter and allow
non-member function
to access private
member.

Pass by value Continued…
// friend function implementation that receive object as

parameter

void changeSubject(subject sub); // receive object sub

{ cout << "\nInsert new subject name: ";

cin >> sub.subjectName;

cout << "\nInsert new subject code: ";

cin >> sub.kod;

cout << "\n Get new information for the subject.";

sub. getDetail();

}

main()

{ subject DS("Data Structure C++","SCJ2013");

DS.getDetail();

changeSubject(DS); // pass object DS by value

cout << "\n View the subject information again: ";

DS.getDetail(); // the initial value does not change

getch();

};

Access class
member,
including
private data
member from
sub.

Pass by reference

 Any changes that the function makes to the object

will change the corresponding actual argument in

the calling function.

 Function prototype for function that receive a

reference object as parameter: use operator &

functionType functionName(className & classObject)

{

// body of the function

{

Pass by Reference
// pass by reference

// friend function that receive object as parameter

void changeSubject(subject &sub); // operator & is used

{ cout << "\nInsert new subject name: ";

cin >> sub. subjectName;

cout << "\nInsert new subject code: ";

cin >> sub.kod;

cout << "\n Get new information for the subject.";

sub. getDetail();

}

main()

{ subject DS("Data Structure C++","SCJ2013");

DS.getDetail();

changeSubject(DS); // pass by reference

cout << "\n View the subject information again: ";

DS.getDetail(); // the value within the object has changed

getch();

};

Class as Return Value from Function
• Syntax for declaring function that return a class object

• Syntax to call function that return a class
objectName = functionName();

where,
▫ objectName, an object from the same class with the type of

class return from the function. This object will be assigned
with the value returned from function

▫ functionName(): function that return class

className functionName(parameter list)

{

// function body

}

Class as Return Value from Function

Point findMiddlePoint(Point T1, Point T2)

{

double midX, midY;

midX = (T1.get_x() + T2.get_x()) / 2;

midY = (T1.get_y() + T2.get_y()) / 2;

Point middlePoint(midX, midY);

return middlePoint;

}

Point point1(10,5), point2(-5,5);

Point point3; // use defult argumen

// point3 is the point in the middle of point1 and point2

point3 = findMiddlePoint(point1,point2)

Function that return a class object, Point

Statement that call function that return a class

Return type is a class

Create instance of Point

Return instance of Point

Call findMiddlePoint that
return object and assign to
point3

Array of class

• A group of objects from the same class can be declared

as array of a class

• Example:

▫ Array of class students registered in Data Structure

class

▫ Array of class lecturer teaching Data Structure Subject

▫ Array of class subjects offered in Semester I.

• Every element in the array of class has it’s own data

member and function member.

• Syntax to declare array of objects :

className arrayName[arraySize];

class staff {

char name[20];

int age ;

float salary;

public:

void read_data() ;

{ cin >> name >> age >> salary;

void print_data()

{ cout << name << age << salary; }

} ;

main()

{

staff manager[20];

// declare array of staff

}

Declare 20 managers from
class staff. Each element of
manager has name, age
and salary.

Array of class

Array of class
How to call member function for manager array?

1. By using array subscript in order to access
manager in certain location of the array.

cin >> n ;

manager[n].read_data() ;

cout << manager[n].name << manager[n].age ;

manager[n].print_data() ;

// read information for 10 managers

for (int x = 0 ; x < 10; x++)

manager[x].read_data();

// print information of 10 managers

for (int y = 0 ; y < 10; y++)

manager[y].print_data();

2. By using loop in order to access a group of managers.

Pointer to Object
 Pointer can be used to store address of an object.

 Example statement to create instance of student

student student1;

 Example statement to create a pointer variable,
named studentPtr

student* studentPtr = &student1;

 The pointer can be initialized with the address of
instance student1

studentPtr = &student1;

 The 2 statements above can be combined as:

student* studentPtr = &student1;

Pointer to Object

2 methods to access class member through pointer
variable studentPtr :

1. (*studentPtr).print()

or

2. studentPtr->print()

Pointer to Object
• Operator new can also be used to allocate memory

for a pointer variable.

• Operator delete destroys memory for a pointer

variable.

void main()

{

student *ptr = new student("Ahmad", 123123);

ptr -> print();

delete(ptr);

ptr = new student("Abdullah", 234234);

ptr ->print();

delete(ptr);

}

Conclusion and Summary

• Abstract Data Type is a collection of data and a set

of operations on the data.

• Abstraction implements information hiding and

encapsulation, whereby other modules cannot

tamper with the data.

• In C++, abstraction is implemented by using class.

