Chemical Engineering Thermodynamics

Vapor/Liquid Equilibrium: Introduction and Application

Mohammad Fadil Abdul Wahab
Consider a multicomponent system in a VLE condition, the fugacity (to be defined in Chapter 11) of species i for each phase is given by,

For vapor mixture
\[\hat{f}_i^v = \hat{\phi}_i y_i P \]

For liquid solution
\[\hat{f}_i^l = \gamma_i x_i f_i \]

VLE criteria (to be shown/derived in chapter 11),
\[\hat{f}_i^l = \hat{f}_i^v \]

so
\[\hat{\phi}_i y_i P = \gamma_i x_i f_i \]

where,
- $\hat{\phi}_i$ fugacity coefficient of species i in gas mixture
- f_i fugacity of pure species i
- γ_i activity coefficient of species i in liquid solution
Raoult's Law

For ideal gas vapor mixture in equilibrium with ideal liquid solution

\[\gamma_i = 1 \]

\[\hat{\phi}_i = 1 \]

equation becomes

\[y_i P = x_i f_i \]

and also for pure species in equilibrium and ideal gas vapor,

\[f_i = f_i^l = f_i^v = P = P_i^{sat} \]

we get,

\[y_i P = x_i P_i^{sat} \quad \text{Raoult's Law} \quad (10.1) \]
Modified Raoult’s Law

\[\hat{\phi}_i = 1 \]

For ideal-gas mixture in equilibrium with non-ideal liquid solution

\[\hat{\phi}_i y_i P = \gamma_i x_i f_i \]

\[y_i P = \gamma_i x_i P_i^{\text{sat}} \quad \text{Modified Raoult's Law} \quad (10.5) \]

where \(\gamma_i \) is a function of \(T \) and \(x_i \).
K-value \((K_i)\)

\[
K_i = \frac{y_i}{x_i} \quad (10.10)
\]

If Raoult’s Law is valid,

\[
y_i P = x_i P_{i}^{sat}
\]

\[
K_i = \frac{P_{i}^{sat}}{P} \quad (10.11)
\]

If Modified Raoult’s Law is valid,

\[
y_i P = x_i \gamma_i P_{i}^{sat}
\]

\[
K_i = \frac{\gamma_i P_{i}^{sat}}{P} \quad (10.12)
\]
K-value Using DePriester Chart

For light hydrocarbon mixture (commonly found in industry),

K_i is essentially function of T and P only.

K_i are tabulated in a chart called the DePriester chart.
Bubblepoint & Dewpoint Calculations
To calculate the P when the 1st bubble appear as a result of decrease in P at constant T. Also calculate the bubble’s composition $\{y_i\}$.

or

To calculate the P when the last bubble disappear as a result of increase in P at constant T. Also calculate the composition $\{y_i\}$ of this bubble.
DEW P: Calculate \(\{x_i\} \) and P, given \(\{y_i\} \) and T

To calculate the P when the 1st dew (a drop of liquid) appear as a result of increase in P at constant T. Also calculate the composition \(\{x_i\} \) of this dew.

or

To calculate the P when the last dew disappear as a result of decrease in P at constant T. Also calculate the composition \(\{x_i\} \) of this dew.
BUBL T: Calculate \(\{y_i\} \) and \(T \), given \(\{x_i\} \) and \(P \)

To calculate the \(T \) when the 1st bubble appear as a result of increase in \(T \) at constant \(P \). Also calculate the composition \(\{y_i\} \) of this bubble.

or

To calculate the \(T \) when the last bubble disappear as a result of decrease in \(T \) at constant \(P \). Also calculate the composition \(\{y_i\} \) of this bubble.
DEW T: Calculate \(\{x_i\} \) and \(T \), given \(\{y_i\} \) and \(P \)

To calculate the \(T \) when the 1st dew (a drop of liquid) appear as a result of decrease in \(T \) at constant \(P \). Also calculate the composition \(\{x_i\} \) of this dew.

or

To calculate the \(T \) when the last dew disappear as a result of increase in \(T \) at constant \(P \). Also calculate the composition \(\{x_i\} \) of this dew.
Derivation

Overall mole balance

\[T = L + V \]

Component mole balance,

\[Tz_i = Lx_i +Vy_i \]

Let \(T = 1 \) mol, so \(V \) and \(L \) are mole fractions,

\[z_i = Lx_i + Vy_i \]

\[z_i = (1 - V)x_i + Vy_i \quad (A) \]

Note: \(z_i \) is overall composition.
Substitute \(y_i = K_i x_i \) into (A),

\[
z_i = (1 - V)x_i + K_i x_i V = x_i (1 - V + VK_i) = x_i (1 + V (K_i - 1))
\]

\[
x_i = \frac{z_i}{1 + V (K_i - 1)}
\]

Substitute \(x_i = \frac{y_i}{K_i} \) into (A),

\[
z_i = (1 - V) \frac{y_i}{K_i} + y_i V \\
z_i K_i = (1 - V) y_i + y_i VK_i
\]

\[
y_i = \frac{z_i K_i}{1 + V (K_i - 1)} \quad \text{(10.16)}
\]
Also,

\[\sum x_i - \sum y_i = 0 \]

\[\sum \frac{z_i}{1+V(K_i-1)} - \sum \frac{z_i K_i}{1+V(K_i-1)} = 0 \]

\[\sum \frac{z_i - z_i K_i}{1+V(K_i-1)} = 0 \]
Bubblepoint Calculation

At bubble point (practically all liquid) L=1, V=0 and \(z_i = x_i \)

\[
\sum \frac{z_i - z_i K_i}{1 + V(K_i - 1)} = 0 \text{ becomes,}
\]

\[
\sum (x_i - x_i K_i) = 0
\]

\[
\sum x_i = \sum x_i K_i
\]

\[
\sum x_i K_i = 1 \quad (10.13) \quad \text{Bubblepoint criteria}
\]
If Raoult's Law valid,

\[\sum x_i K_i = \sum x_i \frac{P_i^{sat}}{P} = 1 \quad \text{so,} \quad P = \sum x_i P_i^{sat} \quad (10.2) \]

see example 10.1

If Modified Raoult's Law valid,

\[\sum x_i K_i = \sum x_i \frac{\gamma_i P_i^{sat}}{P} = 1 \quad \text{so,} \quad P = \sum x_i \gamma_i P_i^{sat} \quad (10.6) \]

see example 10.3
Dewpoint Calculation

At dewpoint (practically all vapor): \(L=0, \ V=1 \) and \(z_i = y_i \)

\[
\sum \frac{z_i - z_i K_i}{1 + V(K_i - 1)} = 0
\]

becomes,

\[
\sum \frac{y_i - y_i K_i}{K_i} = 0
\]

\[
\sum \frac{y_i}{K_i} - \sum y_i = 0
\]

\[
\sum \frac{y_i}{K_i} = 1 \quad (10.14)
\]

Dewpoint criteria
If Raoult's Law valid,

\[\sum \frac{y_i}{K_i} = \sum \frac{y_i}{P_i^{sat}} = 1 \quad P = \frac{1}{\sum \frac{y_i}{P_i^{sat}}} \quad (10.3) , \]

see example 10.1

If Modified Raoult's Law valid,

\[\sum \frac{y_i}{K_i} = \sum \frac{y_i}{\gamma_i P_i^{sat}} = 1 \quad P = \frac{1}{\sum \frac{y_i}{\gamma_i P_i^{sat}}} \quad (10.7) , \]

see example 10.3
Relative Volatility

$$\alpha_{ik} = \frac{y_i}{x_i} = \frac{K_i}{K_k}$$

at azeotrope $$\alpha_{ik} = \frac{1}{1} = 1$$

$$\alpha_{ik} > 1 \quad \text{Species i is relatively more volatile}$$

$$\alpha_{ik} < 1 \quad \text{Species k is relatively more volatile}$$

If Raoult's Law valid,

$$\alpha_{12} = \frac{P_{1}^{sat}}{P} = \frac{P_{1}^{sat}}{P_{2}^{sat}}$$

Note: for higher vapor pressure means more volatile $$\alpha_{12} > 1$$

If Modified Raoult's Law valid,

$$\alpha_{12} = \frac{\gamma_1 P_{1}^{sat}}{\gamma_2 P_{2}^{sat}} = \frac{\gamma_1 P_{1}^{sat}}{\gamma_2 P_{2}^{sat}}$$
Example 10.1
Plot $P_x y_1$ at $T=75^\circ C$

Mixture: Acetonitrile(1)/Nitromethane(2)

Antoine Eqn,

$$\ln P_1^{\text{sat}} / \text{kPa} = 14.2724 - \frac{2945.47}{T / ^\circ C + 224.00}$$

$$\ln P_2^{\text{sat}} / \text{kPa} = 14.2043 - \frac{2972.64}{T / ^\circ C + 209.00}$$

calculate at $75^\circ C$,

$P_1^{\text{sat}} = 83.21 \text{kPa}$ \hspace{1cm} $P_2^{\text{sat}} = 41.98 \text{kPa}$

Note: Acetonitrile(1) is more volatile.
Calculate P and y_1, given a set of x_1 and $T=75^\circ$C. This is BUBL P calculation.

\[
\sum x_i K_i = 1 \quad (10.13) .
\]

Let us assume Raoult's Law is valid, $P = P_b = \sum x_i P_i^{sat} \quad (10.2)$

\[
P = x_1 P_1^{sat} + x_2 P_2^{sat} = x_1 P_1^{sat} + (1-x_1) P_2^{sat}
\]

\[
P = (P_1^{sat} - P_2^{sat})x_1 + P_2^{sat} \quad \text{Eqn A} \quad \text{note: a linear line (y=mx+c)}
\]

Also, $y_1 = \frac{x_1 P_1^{sat}}{P}$ \quad \text{Eqn B}

So, Calculate P for a set of x_1 (Eqn A) and then calculate y_1 (Eqn B)
So now plot \(P_{x_1} \) and \(P_{y_1} \) on Pxy diagram!!
Ex: Calculate P_d and x_1, given $y_1=0.6$ and $T=75^\circ C$
(i.e. what is the dew P for gas mixture at 75$^\circ$C and 60% acetonitrile)

This is point c in previous $P_{x_1y_1}$ diagram.

Dew P calculation (Note: $z_1=y_1$).

$$\sum \frac{y_i}{K_i} = 1 \quad (10.14), \quad \text{If Raoult's Law valid,} \quad P_d = \frac{1}{\sum \frac{y_i}{P_{sat_i}}} \quad (10.3)$$

$$P_d = \frac{1}{\frac{0.6}{83.21} + \frac{0.4}{41.98}} = 59.74kPa$$

Compare with values from P_{xy} diagram.

Then calculate x_1 using,

$$x_1 = \frac{y_1P_d}{P_{sat_1}} = \frac{0.6(59.74)}{83.21} = 0.43$$
• We could also plot Pxy diagram using DEW pressure calculation.

• Set y_i, calculate P_d and x_i.

• Plot Pxy using $P_d x_i y_i$

• DIY.....
Plot $T_x y_1$ at $P=70\text{kPa}$

Mixture: Acetonitrile(1)/Nitromethane(2)

Antoine Eqn,

$$T_{1{\text{sat}}}^{\circ C} = \frac{2945.47}{14.2724 - \ln P/\text{kPa}} - 224.00$$

$$T_{2{\text{sat}}}^{\circ C} = \frac{2972.64}{14.2043 - \ln P/\text{kPa}} - 209.00$$

so at 70kPa,

$$T_{1{\text{sat}}} = 69.84^{\circ C} \quad T_{2{\text{sat}}} = 89.58^{\circ C}$$

As expected Acetonitrile(1) is more volatile
\[\sum x_i K_i = 1 \quad (10.13) \]

For Raoult's Law, \(P = P_b = \sum x_i P_{i}^{sat} \quad (10.2) \)

\[
P = x_1 P_{1}^{sat} + x_2 P_{2}^{sat} = x_1 P_{1}^{sat} + (1 - x_1) P_{2}^{sat}
\]

\[
x_1 = \frac{P - P_{2}^{sat}}{P_{1}^{sat} - P_{2}^{sat}} \quad \text{Eqn C}
\]

Note: Since we used BUBL point calculation, \(T = T_b \)

Choose \(T \) between \(T_{1}^{sat} \) and \(T_{2}^{sat} \), then using Antoine eqns calculate \(P_{1}^{sat} \) and \(P_{2}^{sat} \) at the chosen \(T \) and then calculate \(x_1 \) by Eqn C.

Then calculate \(y_1 \) using,

\[
y_1 = \frac{x_1 P_{1}^{sat}}{P}
\]
Plot $T_{x_1}y_1$ at $P=70$ kPa

Given or Set

$$x_1 = \frac{P - P_2^{sat}}{P_1^{sat} - P_2^{sat}}$$

$$y_1 = \frac{x_1 P_1^{sat}}{P}$$

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>$T=T_b^{(oC)}$</th>
<th>T_1^{sat}</th>
<th>x_1 T_2^{sat}</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>69.84 T_1^{sat}</td>
<td>1 $(x_2=0)$</td>
<td>1 $(y_2=0)$</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>74</td>
<td>0.7378</td>
<td>0.8484</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>78</td>
<td>0.5156</td>
<td>0.6759</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>82</td>
<td>0.3184</td>
<td>0.4742</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>86</td>
<td>0.1424</td>
<td>0.2401</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>89.58 T_2^{sat}</td>
<td>0 $(x_2=1)$</td>
<td>0 $(y_2=1)$</td>
<td></td>
</tr>
</tbody>
</table>

So now plot T_{x_1} and T_{y_1} on a Txy diagram!!
Ex: Calculate T_b and y_1, given $x_1=0.6$ and $P=70\text{kPa}$.
(i.e. calculate the bubble temperature at 70kPa and 60% acetonitrile)

This is point b in previous $T_{x_1y_1}$ diagram. Note: $z_1=x_1$

Bubble temperature calculation!!

\[\sum x_i K_i = 1 \quad (10.13), \]

The solution is not straightforward as T is unknown. Let’s see how to solve mathematically,

For Raoult's Law, $P_b = \sum x_i P_{i}^{sat} \quad (10.2)$

\[P_b = \frac{P_k^{sat}}{P_k^{sat}} \sum x_k P_k^{sat} = P_k^{sat} \sum x_i \frac{P_i^{sat}}{P_k^{sat}} = P_k^{sat} \sum x_i \alpha_{ik} \]

where k is a component that arbitrarily chosen.
\[P_b = P_k^{\text{sat}} \sum x_i \alpha_{ik} \]

where \(\alpha_{ik} = \frac{P_i^{\text{sat}}}{P_k^{\text{sat}}} \) is relative volatility of \(i \) wrt \(k \).

\[P_k^{\text{sat}} = \frac{P_b}{\sum x_i \alpha_{ik}} \quad \text{(A)} \]

Also,

\[\ln \alpha_{ik} = \ln \frac{P_i^{\text{sat}}}{P_k^{\text{sat}}} = \ln P_i^{\text{sat}} - \ln P_k^{\text{sat}} = \left(A_i - \frac{B_i}{T + C_i} \right) - \left(A_k + \frac{B_k}{T + C_k} \right) \]
Solution is through iteration,

1. Start with an initial guess of T as follows,

$$T = \sum x_i T_{i}^{sat}$$

$$T = 0.6(69.84) + 0.4(89.58) = 77.74^\circ C$$

2. Arbitrarily pick a component, e.g. Nitromethane so, $k=2$

3. Calculate α_{ik},

 (note: Number of α_{ik} is equal to total number of component)

$$\ln \alpha_{ik} = \left(A_i - \frac{B_i}{T + C_i} \right) - \left(A_k + \frac{B_k}{T + C_k} \right)$$

we get,

$$\alpha_{12} = 1.9611$$

$$\alpha_{22} = 1$$
4. Calculate P_{k}^{sat} using eqn A,

$$P_{k}^{\text{sat}} = \frac{P}{\sum x_{i} \alpha_{ik}}$$

$$P_{2}^{\text{sat}} = \frac{P}{x_{1} \alpha_{12} + x_{2} \alpha_{22}} = \frac{70}{0.6(1.9611)+0.4(1)} = 44.3977\text{kPa}$$

5. Calculate a new value of T using the Antoine eqn,

$$T = \frac{B_{k}}{A_{k} - \ln P_{k}^{\text{sat}}} - C_{k}$$

$$T = \frac{2972.64}{14.2043 - \ln 44.3977} - 209 = 76.53^\circ C$$

6. Stop if this T is equal or close to earlier value of T, else use this value as a new guess. Repeat steps 3, 4 & 5 until converge.
7. Finally, calculate y_i using Raoult’s law (Use the Antoine Eqn for P_i^{sat})

$$y_1 = 0.7472$$

<table>
<thead>
<tr>
<th>T</th>
<th>a_{12}</th>
<th>P_2^{sat}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.74</td>
<td>1.9611</td>
<td>44.39</td>
<td>76.53</td>
</tr>
<tr>
<td>76.53</td>
<td>1.9703</td>
<td>44.24</td>
<td>76.43</td>
</tr>
<tr>
<td>76.43</td>
<td>1.9717</td>
<td>44.22</td>
<td>76.42</td>
</tr>
</tbody>
</table>
DEW T calculation

Calculate T_d and x_1, given y_1 and P.

Example: Calculate T_d and x_1 for $z_1 = y_1 = 0.6$ and $P = 70\text{kPa}$. See page 356 for the solution (also by iteration) of DEW T calculation.

Answer: $T_d = 79.58^\circ\text{C}$
$x_1 = 0.4351$
Example 10.4

Calculation of dew pressure and bubble pressure using K-value from DePriester chart.

Note: Why the solution is by trial and error?
Flash Calculation
Flash Calculation

An important application of VLE!

Liquid at pressure equal or higher than P_b “flashes” or partially evaporates when the P is reduced, thus producing a vapor and liquid.

Flash calculation is to determine V, L, $\{x_i\}$, and $\{y_i\}$ at T and P by assuming VLE.

Note: $\{x_i\}$ composition of liquid and $\{y_i\}$ composition of vapor
As derived for VLE system,

\[y_i = \frac{z_i K_i}{1 + V(K_i - 1)} \quad (10.16) \]

\[\sum y_i = 1, \quad \text{so:} \]

\[\sum \frac{z_i K_i}{1 + V(K_i - 1)} = 1 \quad (10.17) \]

Solution is by trial and error.

Guess \(V \) until the summation term equal to 1.

But……….

.........first we need to know whether the system is actually two-phase. In general

If $P_d < P < P_b$, two phase

or

If $T_b < T < T_d$, two phase
Examples of Flash Calculation

Example 10.5:
Flash calculation for system where Raoult’s Law valid

Example 10.6:
Flash calculation using K-value from DePriester Chart
Dewpoint T of Mixture of Water Vapor and Non-condensable Gases

This is a special case of dew T calculation.
Solution is straightforward by the application of Raoult’s Law to the condensable component H_2O (here identified as component 2).

The system contains a dew (liquid water) in VLE with mixture of water vapor and non-condensable gases (such as N_2, CO_2, O_2 etc.).

\[y_2 P = x_2 P_2^{sat} \]

The dew is 100% H_2O, so \(x_2 = 1 \)

so \(P_2^{sat} = y_2 P \)
Example

Dewpoint T of Combustion Products

For stoichiometric combustion of methane, calculate dew point T of the combustion products.

$$\text{CH}_4 + 2\text{O}_2 + 2(79/21)\text{N}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + 2(79/21)\text{N}_2$$

Mole fraction of H_2O is $\frac{2}{1+2+2(79/21)} = 0.19$

$$P_2^{\text{sat}} = y_2 P \quad P_2^{\text{sat}} = 0.19(101.325\text{kPa}) = 19.25\text{kPa}$$

From steam table*, $T_d = T_2^{\text{sat}} = 59.5^\circ\text{C}$

*You could also use Antoine Eqn.
Henry’s Law
Henry’s Law is VLE relation that is valid for ideal-gas mixture in equilibrium with a dilute solution, where we want to know the composition of dissolve gas i in the dilute solution.

For example,

a) CO$_2$ and H$_2$O system.

b) Air and H$_2$O system.

\[
\hat{\phi}_i y_i P = \gamma_i x_i f_i \\
y_i P = x_i \gamma_i f_i = x_i \gamma_i P^{sat} \\
\text{let } H_i = \gamma_i f_i = \gamma_i P^{sat}
\]

H_i is Henry’s constant (in bar) for dissolved gas (i).

so \[y_i P = x_i H_i \quad \text{Henry’s Law}\]
$y_iP = x_iH_i$

So at dilute solution,
$y_i = \left(\frac{H_i}{P}\right) x_i$

For constant system pressure P,
$y_i = (\text{Constant})x_i$

If we plot y_i vs x_i, we get a straight line through the origin.

So Henry’s constant for dissolved gas (i) can be easily determined from experiment.
In previous example of dewpoint for combustion product, we assume the liquid is all \(\text{H}_2\text{O} \) \((x_2=1) \).

What if we want to know the mole fraction of dissolved \(\text{CO}_2 \) (component 1) in the dew (liquid)?

We could solve this using Henry’s Law for dissolved gases \(\text{CO}_2 \).
Apply Henry’s law for component 1.

Use H_1 data from Table 10.1 (note: this actually valid at 25°C).

\[
x_1 = \frac{y_1 P}{H_1} = \frac{(1/(1+2+7.52))(1.013\text{bar})}{1670\text{bar}} = 3.4622 \times 10^{-5} \approx 0
\]

As expected, only small amount of CO$_2$ present in liquid water.

See also example 10.2
If the fugacity of \(i \) in liquid phase is given by Henry’s Law,

\[
\hat{f}_i = \gamma_i x_i f_i = x_i H_i
\]

If the gas is ideal solution (Lewis/Randall is valid),

\[
\hat{f}_i^{id} = \phi_i y_i P
\]

So we get the following version of Henry’s Law if gas mixture is ideal solution,

\[
\phi_i y_i P = x_i H_i
\]
Extension of Example 10.3

Plot $P_x_1 y_1$ and $x_1 y_1$ diagrams at $T=318.15K$

From bubblepoint calculation,

Set x_1
Calculate P_b
Calculate y_1
<table>
<thead>
<tr>
<th>x1</th>
<th>G1</th>
<th>G2</th>
<th>P</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3.03</td>
<td>1.00</td>
<td>65.64</td>
<td>0.00</td>
</tr>
<tr>
<td>0.05</td>
<td>2.72</td>
<td>1.00</td>
<td>68.57</td>
<td>0.09</td>
</tr>
<tr>
<td>0.10</td>
<td>2.45</td>
<td>1.01</td>
<td>70.64</td>
<td>0.15</td>
</tr>
<tr>
<td>0.15</td>
<td>2.23</td>
<td>1.03</td>
<td>72.06</td>
<td>0.21</td>
</tr>
<tr>
<td>0.20</td>
<td>2.03</td>
<td>1.05</td>
<td>72.97</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>1.86</td>
<td>1.07</td>
<td>73.50</td>
<td>0.28</td>
</tr>
<tr>
<td>0.30</td>
<td>1.72</td>
<td>1.10</td>
<td>73.73</td>
<td>0.31</td>
</tr>
<tr>
<td>0.35</td>
<td>1.60</td>
<td>1.15</td>
<td>73.73</td>
<td>0.34</td>
</tr>
<tr>
<td>0.40</td>
<td>1.49</td>
<td>1.19</td>
<td>73.54</td>
<td>0.36</td>
</tr>
<tr>
<td>0.45</td>
<td>1.40</td>
<td>1.25</td>
<td>73.17</td>
<td>0.38</td>
</tr>
<tr>
<td>0.50</td>
<td>1.32</td>
<td>1.32</td>
<td>72.63</td>
<td>0.40</td>
</tr>
<tr>
<td>0.55</td>
<td>1.25</td>
<td>1.40</td>
<td>71.92</td>
<td>0.43</td>
</tr>
<tr>
<td>0.60</td>
<td>1.19</td>
<td>1.49</td>
<td>70.99</td>
<td>0.45</td>
</tr>
<tr>
<td>0.65</td>
<td>1.15</td>
<td>1.60</td>
<td>69.81</td>
<td>0.47</td>
</tr>
<tr>
<td>0.70</td>
<td>1.10</td>
<td>1.72</td>
<td>68.29</td>
<td>0.50</td>
</tr>
<tr>
<td>0.75</td>
<td>1.07</td>
<td>1.86</td>
<td>66.36</td>
<td>0.54</td>
</tr>
<tr>
<td>0.80</td>
<td>1.05</td>
<td>2.03</td>
<td>63.88</td>
<td>0.58</td>
</tr>
<tr>
<td>0.85</td>
<td>1.03</td>
<td>2.23</td>
<td>60.70</td>
<td>0.64</td>
</tr>
<tr>
<td>0.90</td>
<td>1.01</td>
<td>2.45</td>
<td>56.60</td>
<td>0.72</td>
</tr>
<tr>
<td>0.95</td>
<td>1.00</td>
<td>2.72</td>
<td>51.31</td>
<td>0.83</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>3.03</td>
<td>44.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

G1 is gamma1
Locate azeotropic pressure at \(T=318.15 \text{K} \) and its composition.
Locate BUBL P at T=318.15K, \(x_1 = 0.25 \)
Locate DEW P at $T=318.15\,K$, $y_1=0.6$.
Locate azeotropic composition at 318.15K

\[T = 318.15 \]

\[\alpha_{12} > 1 \]
A stream of mixture of methanol(1)/methyl acetate(2) is inside a pipeline where the T is 318.15K and P is 66kPa. The stream contains (60 mole percent methanol). What is the phase of the stream?
Let’s check bubble pressure and dew pressure.

From example 10.3b), Dew P is 62.89kPa

Now calculate bubble P,

\[P_b = x_1 \gamma_1 P_{1}^{sat} + x_2 \gamma_2 P_{2}^{sat} = 71kPa \]

\(P_d < P < P_b \) hence two phases!

Locate the conditions on the following \(Px_1y_1 \) diagram.

Determine \(V, L, \{x_i\} \) and \(\{y_i\} \) using flash calculation.
T=318.15

Series1
Series2
\[K_1 = \frac{P_{1}^{sat} \gamma_1}{P} = \frac{P_{1}^{sat} \exp(A(x_2)^2)}{P} \]
\[K_2 = \frac{P_{2}^{sat} \exp(A(x_1)^2)}{P} \]

We need \(x_1 \) !! Let's us do bubble point calculation at
\(P = 66 \text{kPa}, T = 318.15 \text{K} \) and \(x_1 \)

\[P_b = 66 \text{kPa} = x_1 \gamma_1 P_{1}^{sat} + x_2 \gamma_2 P_{2}^{sat} \quad \text{(a)} \]
\[K_1 = \frac{P_1^{sat} \gamma_1}{P} = \frac{P_1^{sat} \exp(A(x_2)^2)}{P} \]
\[K_2 = \frac{P_2^{sat} \exp(A(x_1)^2)}{P} \]
so (a) becomes,

\[66 = x_1 P_1^{sat} \exp(A(1 - x_1)^2) + (1-x_1) P_2^{sat} \exp(A(x_1)^2) \]
66 = x_1(44.51)\exp(1.107)(1 - x_1)^2) + (1-x_1)(65.64)\exp(1.107(x_1)^2)

Guess x_1,

\begin{align*}
x_1 &= 0.7 \quad P=68.29 \\
x_1 &= 0.8 \quad P=63.88 \\
x_1 &= 0.75 \quad P=66.36 \\
x_1 &= 0.76 \quad P=65.91 \ldots \text{good enough}
\end{align*}
Now we can calculate K_1 and K_2 for flash calculation,

$$K_1 = \frac{P_1^{sat} \gamma_1}{P} = \frac{44.51 \exp(1.107(1 - 0.76)^2)}{66} = 0.719$$

$$K_2 = \frac{65.64 \exp(1.107(0.76)^2)}{66} = 1.885$$
Substitute into eqn (10.17),

\[\sum \frac{z_i(K_i)}{1 + V(K_i - 1)} = 1 \]

\[\frac{0.6(0.719)}{1 + V(0.719 - 1)} + \frac{(1 - 0.6)(1.885)}{1 + V(1.885 - 1)} = 1 \]
(10.17)

\[\frac{0.431}{1 - 0.281V} + \frac{0.754}{1 + 0.885V} = 1 \]
\[
\frac{0.431}{1 - 0.281V} + \frac{0.754}{1 + 0.885V} = 1
\]

Guess, \(\sum = 1 \)

\begin{align*}
V=0.50 & \quad 1.024 \\
V=0.55 & \quad 1.017 \\
V=0.70 & \quad 1.002 \\
V=0.75 & \quad 0.999 \\
V=0.73 & \quad 1.000
\end{align*}

So \(V=0.73 \) \quad \text{L}=1-V=0.27
\[y_i = \frac{z_i K_i}{1 + V(K_i - 1)} \]

(10.16)

\[y_1 = \ldots \]

\[y_2 = \ldots \]

\[x_i = \frac{y_i}{K_i} \]

\[x_1 = \ldots \]

\[x_2 = \ldots \]